A polar coordinate particle swarm optimiser
نویسندگان
چکیده
The Particle Swarm Optimisation (PSO) algorithm consists of a population (or swarm) of particles that are “flown” through an n-dimensional space in search of a global best solution to an optimisation problem. PSO operates in Cartesian space, producing Cartesian solution vectors. By making use of an appropriate mapping function the algorithm can be modified to search in polar space. This mapping function is used to convert the position vectors (now defined in polar space) to Cartesian space such that the fitness value of each particle can be calculated accordingly. This paper introduces the Polar PSO algorithm that is able to search in polar space. This new algorithm is compared to its Cartesian counterpart and the experimental results show that the Polar PSO outperforms the Cartesian PSO in low dimensions when both algorithms are applied to the search for eigenvectors of different n× n square matrices.
منابع مشابه
Winding Deformation Identification Using A Particle Swarm Optimiser with Passive Congregation for Power Transformers
This paper presents a new approach to identify distributed parameters of a lumped-element model for a power transformer. A simplified circuit of a lumped-element model is developed to calculate frequency responses of transformer windings in a wide range of frequency domain. In order to seek optimal parameters of the simplified circuit of the transformer, an intelligent learning technique, based...
متن کاملAn Empirical Comparison of Particle Swarm and Predator Prey Optimisation
In this paper we present and discuss the results of experimentally comparing the performance of several variants of the standard swarm particle optimiser and a new approach to swarm based optimisation. The new algorithm, which we call predator prey optimiser, combines the ideas of particle swarm optimisation with a predator prey inspired strategy, which is used to maintain diversity in the swar...
متن کاملTraining Product Unit Networks using Cooperative Particle Swarm Optimisers
The Cooperative Particle Swarm Optimiser (CPSO) is a variant of the Particle Swarm Optimiser (PSO) that splits the problem vector, for example a neural network weight vector, across several swarms. This paper investigates the influence that the number of swarms used (also called the split factor) has on the training performance of a Product Unit Neural Network. Results are presented, comparing ...
متن کاملA Convergence Proof for the Particle Swarm Optimiser
The Particle Swarm Optimiser (PSO) is a population based stochastic optimisation algorithm, empirically shown to be efficient and robust. This paper provides a proof to show that the original PSO does not have guaranteed convergence to a local optimum. A flaw in the original PSO is identified which causes stagnation of the swarm. Correction of this flaw results in a PSO algorithm with guarantee...
متن کاملParticle Swarm based Data Mining Algorithms for classification tasks
Particle Swarm Optimisers are inherently distributed algorithms where the solution for a problem emerges from the interactions between many simple individual agents called particles. This article proposes the use of the Particle Swarm Optimiser as a new tool for Data Mining. In the first phase of our research, three different Particle Swarm Data Mining Algorithms were implemented and tested aga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011